

HKGBC ACT-Shop Concept and Progress

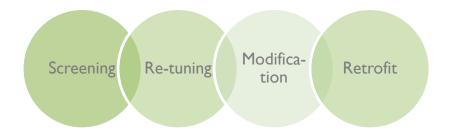
24 JAN 2017

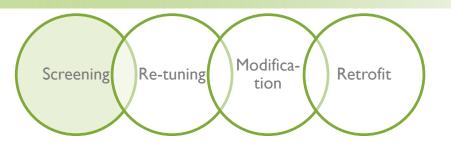
Content

- 1. Concept and Objective of ACT-Shop
- 2. Progress Update
 - a) Case Sharing
 - b) Survey Findings
- 3. Way Forward & Timeline

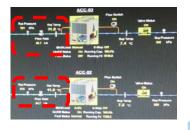
Idea of ACT-Shop

- Knowledge-based
- Buildings as living laboratories
- HKGBC as facilitator
- Learning from peers
- Building up in-house competence


Objectives


- Actively supporting HK gov's Climate Ready@HK
- Building up the competence for the industry on retrocommissioning through
 - developing the data/knowledge base
 - developing a systematic approach for retro-commissioning
 - demonstrating the value of retro-commissioning
 - transferring the knowledge and skills to the industry
 - establishing a practical operation & management system
- Promoting the adoption of best practices to the industry

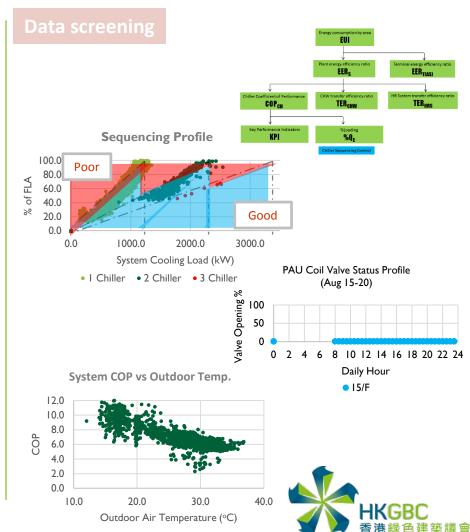
PROGRESS UPDATE CASE SHARING

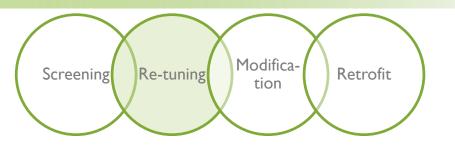


On-site screening

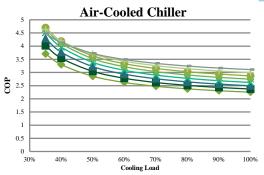
Data inconsistency

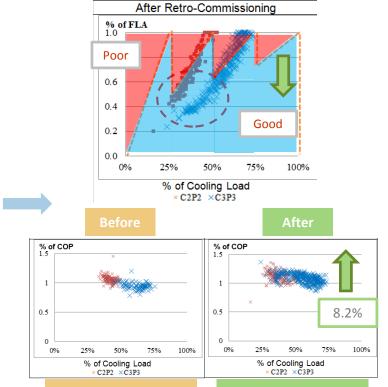
Malfunctioned plants




Fault readings from control panel

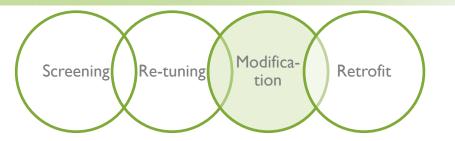
Data availability


		Electri				
N/AA	*	4	2.8	19		
PART I	11111	4308	VINIA	- KIVIK	478/8	
			Erwingy			
Children Total Total	YOUY	49494	K(/)/	N6/3/	1997	
C1 = 1_/1_/1_	N/A	NVOC.	80V7V	NA.	coor.	
TUPMIN	W/W	101	VV.	960	VV.	
Combined Palls	w/w	V/V	VW.	496	VVC.	
mentals (1.1)	16/4	414	410	400	414	
Of temperature		1.0				
Statler (FILE)		NA.	NA.	NA.		
DIM/Pune (NI)	NA	(4)	NA.	NA.		
W Pung (98)	NA	NA NA	NA.	NA.	NA:	
Colling Tower (Flat)	NA	NA.		NA.	~	
May No.		(4)	1		V	
HE STATE OF				12	¥	
Harris Name	NA	NA.		NA:	- V	
ML-NL	NA	NA.		NA.	¥.	

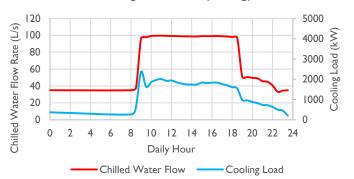


Action:

Operate 3 chillers within 25%-50% loading range


Verified Results:

Annual energy saving 226,000 kWh (4.75%)

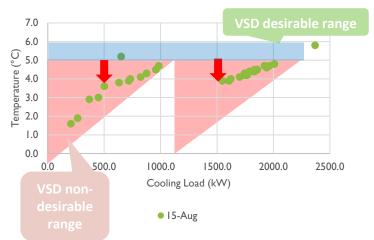


Average COP: 3.67

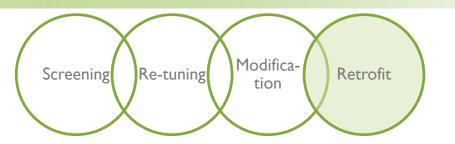
Cooling Load Profile (15-Aug)

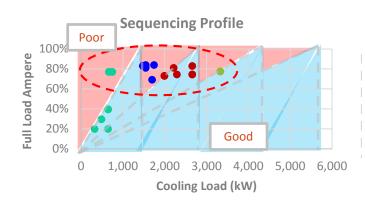
Action:

Installation of pressure sensor at critical path for pump flowrate control

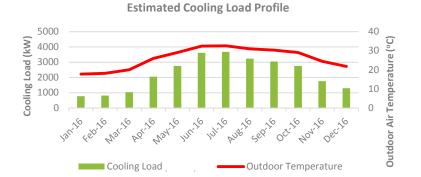

Progress:

Installation of pressure sensors in progress


Potential Saving:


Annual pump power saving = 70,000 kWh (40%)

Differential Temperature of water variation with demand



● 1 Chiller ● 2 Chiller ● 3 Chiller ● 4 Chiller

Unable to meet chilled water supply temperature set-point

Action:

options for chiller replacement

	Original	Option 1	Option 2	Option 3	
Chiller	4 x 400 TR Air-cooled (VSD)	3 x 400 TR Air-cooled (VSD)	2 x 400 TR Air-cooled (VSD)	2 x 450 TR Air-cooled (VSD)	
Estimated Payback	9-10 years	8 years	6 years	5.5-6 years	
Annual Saving (kWh)	1,365,000	1,365,000	1,210,000	1,490,000	
ROI @10 th year	@10 th year 10%		74%	79%	
IRR @10 th year	3%	7%	13%	13%	

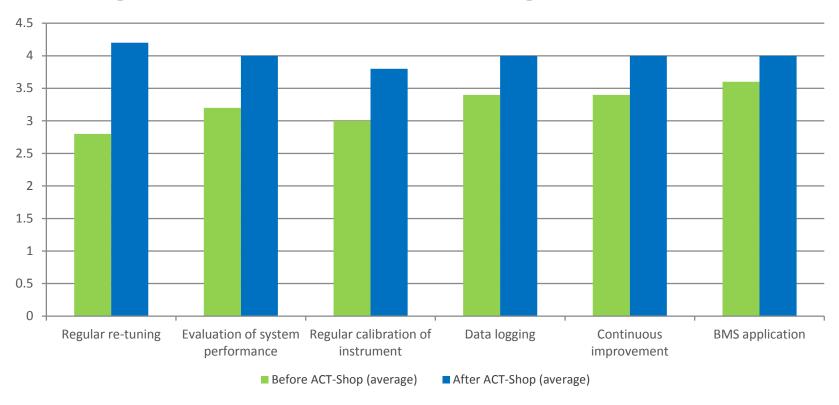
P.s. Variable Speed Drive (VSD

Saving Summary of Re-tuning/Modification

Suggested Re-tuning Work	Bld A	Bld B	Bld C	Bld D	Bld E
Chillers					
Reduce chiller operation (N-1) to achieve higher overall COP	5-6% <1 year		3-5% 3-5 year		3-5% <1 year
Increase Tcws	1-3% <1 year		1-3% <1 year		1-3% <1 year
Max. demand shedding	0-1% <1 year	1-3% <1 year	0-1% <1 year	1-2% <1 year	0-1% <1 year
Pumps (chilled water flow)					
Re-tune bypass valve setting			1-3% <1 year	1-3% <1 year	1-3% <1 year
Install differential pressure sensors at the critical path	1-3% <1 year				1-3% <1 year
Install VSD on the existing chilled water pumps	N/A	3-5% 3-5 year	3-5% 3-5 year		N/A
Cooling towers					
Reactive cooling tower (CT) optimisation	N/A	N/A	1-3% <1 year	N/A	1-3% <1 year

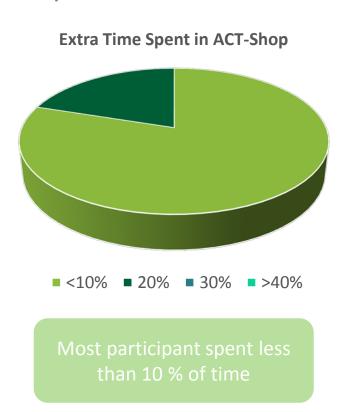
Feedback to Designers

- Provide a separate system for data centre/24-hour A/C premises
- Plant sizing making reference to existing buildings
- Plant & equipment design for part-load efficiency
- Adequate instrumentation (Industrial grade)
- Capability of BMS to suit operators' need



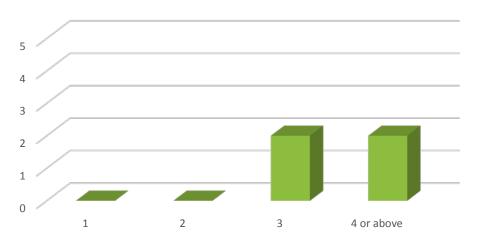
PROGRESS UPDATE SURVEY FINDINGS

Survey Findings

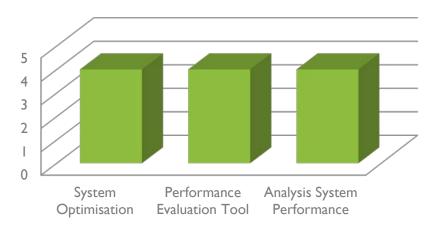

Knowledge Gain on Retro-Commissioning:

Survey Findings (con't)

Time spent:



Survey Findings (con't)


Future Training Programme:

Suggested Training Sessions

At least 3 training sessions are required

Suggested Training Items

All training items are important

WAY FORWARD & TIMELINE

ACT-Shop Series (Short & Medium Terms)

ACT-Shop

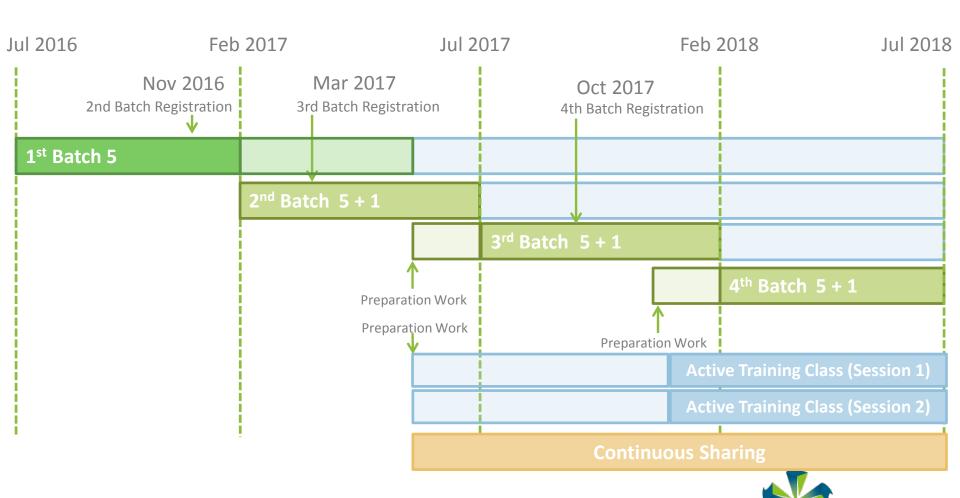
- Building up knowledge & competence for participating building operators/services providers
- Target
 - At least one building of the 20+ large commercial building owners + a few other pilots
 - On-going knowledge up-dating

Active Training

Reinforcement and Extending to Industry

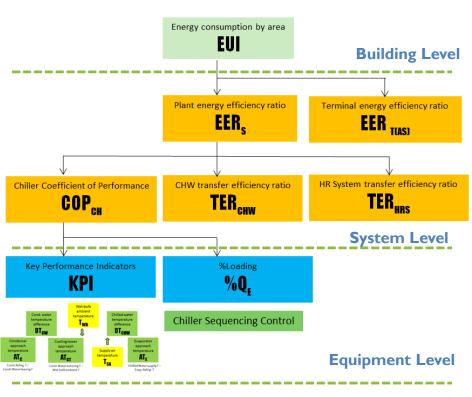
Continuous Sharing

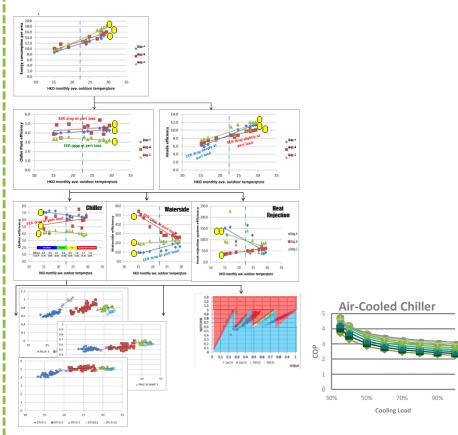
- Forums
- Experience sharing with EMSD & Industry
- Best Practice Notes



Active Training

- Target Participants
 - Individual involves in managing / operating a building
 - Service providers / equipment / system providers / contractors
 - Encourage operator/building manager to come with services provider
- Mode of training
 - Semi-ACT-Shop
 - Gone through the essential process of retro-commissioning
 - Exercise using data from participants' buildings
 - Pilot project on an energy saving project from participants
- Participants expected to be able to:
 - Have in-depth knowledge and know how on proper retro-commissioning
 - lead in-house team or service provider to carry out proper retro-commissioning
 - Specify requirements to service providers when contract out the process




Programme Timeline – ACT-Shop Series

e-O&M Manual + Benchmarking

Purposed e-O&M Manual:

Chank

Active Training (Q&A)

- Module Structure
- Theory
 - Basic theories on HVAC relating to energy efficiency
 - Basic mathematical and analytical methods used during the training
- Knowledge based retro-commissioning based on real case and data
 - Data collections, screening and data analysis,
 - Identifying opportunities
 - Saving estimates and evaluation
 - Practical methods on implementing improvements
 - Measurement and verification
 - Exercises with participants' data
- Technology sharing by suppliers
 - Performance characteristics of major equipment/BMS/services/design
 - New technologies
- Industry updates
 - Government, other institutions or other speakers
- Group or individual project (optional)
 - An energy saving project report demonstrating what has learnt (saving estimation, implementation, measurement & verification)
- Future modules on knowledge based energy management

